Table II. Density and Viscosity Data for Binary Mixtures 45 °C

		viscosity			viscosity
	density.	$\times 10^{-1}$		density.	× 10 ⁻¹ .
X .	g/cm^3	kg/(m/s)	<i>X</i> .	g/cm^3	kg/(m/s)
			<u>1</u>	8/	<u>B</u> / (/ -)
• •	I. Brome	10rm (1) - Car	bon letr	achioride ((2)
0.0	1.00131	0.744 85	0.0001	2.30010	1.1640
0.1597	1.74545	0.82150	0.8607	2.61138	1.3285
0.3179	1.93234	0.91311	1.0	2.78232	1.47640
0.5191	2.17523	1.0558			
	II. Bron	noform (1)–D	imethyl S	ulfoxide (2)
0.0	1.08693	1.365 80	0.5441	2.10815	1.982 00
0.1216	1.33858	1.56800	0.5955	2.190 30	1.98250
0.2541	1.59575	1.78740	0.8193	2.53366	1.71610
0.4430	1.93579	1.97840	1.0	2.78232	1.47640
				(0)	
	111. 1	Sromotorm (1)-Cyclone		1 1 1 0 7 0
0.0	0.76249	0.633 77	0.6911	2.073 39	1.11270
0.1748	1.06127	0.72362	0.8747	2.48639	1.309.00
0.3427	1.36845	0.820 05	1.0	2.782 32	1.47640
0.5476	1.77066	0.976 94			
	IV. B	romoform (1)	-Bromobe	enzene (2)	
0.0	1.476 39	0.853 55	0.6863	2.32870	1.27170
0.1693	1.67123	0.950 44	0.8710	2.59182	1.39580
0.3354	1.87048	1.05110	1.0	2.78232	1.47640
0.5411	2.131 48	1.176 80			
	V D	(1) D			0)
0.0	V. Bron	1010rm(1)-D1	methylio		Z)
0.0	0.93468	0.634 84	0.6142	2.133 94	1.471 10
0.1317	1.21187	0.81900	0.7204	2.322.70	1.51800
0.2705	1.490 88	1.04640	0.8296	2.50572	1.51860
0.4636	1.861.02	1.313 20	1.0	2.78232	1.47640
	VI. Brom	oform (1)-M	ethyl Eth	yl Ketone	(2)
0.0	0.78781	0.34167	0.6499	2.095 85	1.03780
0.1474	1.08613	0.46777	0.8502	2.493 09	1.298 40
0.3005	1.396 04	0.62283	1.0	2.78232	1.47640
0.5019	1.800 69	0.85226			
	VII I	Reamoform (1)_ F +b] A	antata (2)	
0.0	0 970 11		0 7671	0 210 22	1 179 20
0.0	1 961 01	0.362 52	1.0	2.312.00	1.175.30
0.2090	1.001.01	0.000 33	1.0	2.162.32	1.47040
0.0428	1.000.00	0.01100			
	VIII	Bromoform	(1)-Meth	anol (2)	
0.0	0.775 90	0.43453	0.7234	2.50171	1.26050
0.1630	1.39094	0.69347	0.8987	2.69697	1.38330
0.3122	1.79570	0.88443	1.0	2.78232	1.47640
0.4563	2.09590	1.04340			

Solvent mixtures were prepared by weighing a calculated volume of each solvent in the mixture; special airtight glassstoppered bottles were used for this purpose. Densities (ρ) and viscosities (η) at 45 °C were measured by the procedure described earlier (3). Triplicate measurements of each composition of the mixture showed a reproducibility range for density of ± 0.00006 g/cm³ and for viscosity of ± 0.00004 kg/(m/s). However, only the average data are presented in Table II. The mole fractions (X_1) were calculated from the measured volumes and densities of individual components (3).

Results and Discussion

Experimental data of ρ and η are listed in Table II as a function of mole fraction (X_1) of the first component in the mixture (i.e., bromoform). To the best of our knowledge no data were available for the systems investigated here and hence no comparison with the published results was possible.

The binary kinematic viscosity (η/ρ) data have been correlated by using the cubic equation of McAllister (5) as well as the Heric (6) and Auslander (7) relations. Statistical analysis of the back-calculated values of viscosities in comparison to the measured values indicated an average percent deviation from 1.0 to 1.5 for McAllister equation; for the Auslander or Heric relations, this was found to be between 2.0 and 3.0.

Registry No. Bromoform, 75-25-2; carbon tetrachloride, 56-23-5; dimethyl sulfoxide, 67-68-5; cyclohexane, 110-82-7; bromobenzene, 108-86-1; dimethylformamide, 68-12-2; ethyl acetate, 141-78-6; ethyl methyl ketone, 78-93-3; methanol, 67-56-1.

Literature Cited

- (1) Aminabhavi, T. M.; Manjeshwar, L. S.; Balundgi, R. H. Indian J. Chem. 1986, 25A, 465. Aminabhavi, T. M.; Manjeshwar, L. S.; Balundgi, R. H. J. Chem. Eng.
- (2) Data 1987. 32. 50.
- (3) Gokavi, G. S.; Raju, J. R.; Aminabhavi, T. M.; Balundgi, R. H.; Muddaur, M. V. J. Chem. Eng. Data 1988, 31, 15.
- (4) Riddick, A. J.; Bunger, B. W. *Techniques of Organic Chemistry*, 3rd ed.; Wiley-Interscience: New York, 1970; Vol. II.
 (5) McAllister, R. A. AIChE J. 1960, 6, 427.
- Heric, E. L. J. Chem. Eng. Data 1986, 11, 66.
- (7) Auslander, G. Br. Chem. Eng. 1964, 9, 610.

Received for review July 25, 1986. Revised June 8, 1987. Accepted November 19, 1987.

Experimental Densities and Derived Thermodynamic Properties for Carbon Dioxide–Water Mixtures

Mukund R. Patel and Philip T. Eubank*

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843

Vapor-phase densities have been measured for mixtures of 2, 5, 10, 25, and 50 mol % water in carbon dioxide by using a Burnett-isochoric apparatus. These experimental densities, which cover a temperature range from 323.15 to 498.15 K and a pressure range from 27 kPa to 10.34 MPa, are considered accurate to $\pm 0.05\%$. Thermodynamic properties, derived from the experimental data for all five mixtures, have also been reported along

with the corresponding pressure-enthalpy diagrams.

Introduction

Few high-accuracy density measurements are available for nonpolar/polar vapor mixtures over extended ranges of pressure, temperature, and composition. Such data are extremely important in developing reliable equations of state and in calculating thermodynamic properties.

Carbon dioxide-water mixtures have long been important in combustion studies and in the manufacture of carbonated beverages. Besides these well-known uses, they are de-

Table I. Molar Densities and Dimensionless Thermodynamic Properties for the 98% CO₂-2% H₂O Gaseous Mixture⁴

	bedbivieb and bime	Moremicoo ameria		perces for th			
P. MPa	0. mol/m ³	Z	U/RT	H/RT	A/RT	G/RT	S/R
, 1711 a	<i>p</i> ;				,		- /
	_		T = 498.1	15 K			
0.000	0.000	1.00000	1.1860	2.1860	-∞		<u>ao</u>
0.13797	33.349	0.99894	1.1823	2.1812	3.2350	4.2339	-2.0527
0.20336	49.179	0.99844	1.1805	2.1789	3.6229	4.6214	-2.4424
0.29966	72.523	0.99770	1.1778	2.1755	4.0106	5.0083	-2.8328
0 441 42	106.947	0.996.62	1.1740	2.1706	4.3979	5.3946	-3.2240
0.441.42	157 709	0.005.02	1 1683	2 1633	4 7848	5 7798	-3 6165
0.049 91	107.709	0.990 00	1,1000	2.1000	-1.10-10 E 1709	0.1100	4.0100
0.956 14	232.563	0.99271	1.1599	2.1526	5.1706	0.1035	-4.0109
1.40515	342.941	0.98934	1.1476	2.1369	5.5558	6.5451	-4.4082
2.06179	505.698	0.98445	1.1296	2.1141	5.9391	6.9236	-4.8095
3.01862	745.679	0.977 46	1.1034	2.0809	6.3202	7.2976	-5.2167
4,40611	1099.515	0.96760	1.0655	2.0331	6.6979	7.6655	-5.6324
6 405 66	1621 196	0 954 05	1 0111	1 9652	7.0711	8 0 2 5 2	-6.0600
0.400.00	2200 205	0.036.20	0 0343	1 8705	7 4382	8 3744	-6 5040
9.207 00	2090.290	0.55020	0.3040	1.0700	1.4002	0.0744	0.0040
			T = 473.2	15 K			
0 000 00	0.000	1 000 00	1.0237	2.0237	-∞	- 00	80
0.000.00	22 240	0.008.74	1 0106	2.0194	3 2017	1 2001	-2 2720
0.13102	33.349	0.990 14	1.0150	2.0164	0.2011	4.2304	-2.2720
0.19310	49.179	0.99814	1.0177	2.0159	3.6795	4.6777	-2.6618
0.28450	72.523	0.99727	1.0149	2.0122	4.0671	5.0643	-3.0522
0.41900	106.947	0.99598	1.0107	2.0067	4.4542	5.4502	-3.4435
0.61671	157.709	0.994 09	1.0046	1.9987	4.8407	5.8348	-3.8361
0 906 89	232,563	0.991 33	0.9956	1.9869	5,2263	6.2177	-4.2307
1 221 88	242 941	0.987.30	0.0823	1 9696	5 6106	6 5979	-4 6283
1.001.00	542.541	0.001 40	0.0020	1.0000	5.0100	6.0745	= 0.0200
1.952.39	505.698	0.98148	0.9629	1.9444	0.9930	0.9740	-5.0301
2.85442	745.679	0.97313	0.9345	1.9077	6.3727	7.3458	-5.4381
4.15785	1099.515	0.96133	0.8932	1.8545	6.7484	7.7097	-5.8552
6.026 81	1621.196	0.94505	0.8334	1.7784	7.1187	8.0637	-6.2853
8,683 22	2390.295	0.92349	0.7477	1.6712	7.4816	8.4051	-6.7339
0.000 11	20001200		0.1.1.1			0.0000	
			T = 448.2	15 K			
0.000.00	0.00	1.00000	0.8484	1.8484	-8		8
0 124 07	33 349	0 998 51	0.8440	1 8425	3 3493	4 3408	2 4983
0.12407	40.170	0.007.91	0.0410	1 0207	2 7200	4.0400	-0.9991
0.162.63	49.179	0.997 01	0.0419	1.0050	0.7000	4.1210	-2.0001
0.269 33	72.523	0.99677	0.8389	1.8356	4.11/4	5.1142	-3.2785
0.39657	106.947	0.99525	0.8344	1.8296	4.5043	5.4996	-3.6700
0.58349	157.709	0.99301	0.8277	1.8207	4.8905	5.8835	-4.0628
0.85760	232.563	0.98974	0.8179	1.8076	5.2756	6.2653	-4.4577
1 258 54	342 941	0.984.98	0.8035	1.7884	5.6591	6.6441	-4.8557
1 849 80	505 698	0.978.06	0 7823	1 7603	6.0404	7 0185	-5.2581
1.042.00	745 670	0.000 10	0.7020	1 7100	6 41 94	7 3966	5.2001
2.009/2	140.019	0.90013	0.7511	1.7190	0.4104	7.3000	-0.0073
3.90835	1099.515	0.954.05	0.7056	1.0090	6.7918	7.7459	-6.0862
5.64468	1621.196	0.93451	0.6391	1.5736	7.1587	8.0932	6.5196
8.089 58	2390.295	0.90835	0.5426	1.4509	7.5166	8.4250	-6.9741
			T (00)	4 - 77			
			T = 423.1	15 K			
0.00000	0.000	1.00000	0.6582	1.6582	-8		00
0.11712	33.349	0.99825	0.6534	1.6516	3.3853	4.3835	-2.7319
0.17256	49.179	0.99742	0.6511	1.6485	3.7729	4.7703	-3.1218
0.25416	72.523	0.996 20	0.6477	1.6439	4,1601	5,1563	-3.5124
0.20113	106 947	0 994 40	0.6427	1 6372	1 5467	5 5411	-3 90/0
0.57415	157 700	0.001 77	0.0121	1.0072	4 0005	5 0040	4 9071
0.000 20	157.709	0.99177	0.6354	1.0272	4.9320	0.9243	-4.2971
0.808 26	232.563	0.98791	0.6246	1.6125	5.3170	6.3049	-4.6924
1.18507	342.941	0.98228	0.6087	1.5910	5.6997	6.6820	-5.0910
1.73293	505.698	0.97409	0.5853	1.5594	6.0797	7.0538	-5.4944
2.52436	745.679	0.962 29	0.5507	1.5130	6.4558	7.4181	-5.9051
3,657.18	1099.515	0.94548	0.4998	1.4453	6.8264	7.7719	-6.3266
5 258 26	1621 196	0 921 97	0.4250	1 3469	7 1892	8 1119	-6 7643
7 494 45	0200.005	0.02107	0.9149	1.0400	7.5419	0.1112	7 9965
(.404 40	2390.290	0.09000	0.0140	1.2049	7.0415	0.4014	-1.2205
			T = 398	15 K			
0.000.00	0.000	1 000 00	0 4505	1 /505			~
0.00000	0.000	1.000 00	0.4000	1.4000	0 41 90		0.0700
0.11016	33.349	0.99794	0.4452	1.4431	3.4188	4.4167	-2.9736
0.16230	49.179	0.99696	0.4426	1.4396	3.8062	4.8032	-3.3636
0.238 99	72.523	0.99552	0.4389	1.4344	4.1932	5.1887	-3.7544
0.35167	106.947	0.99341	0.4333	1.4267	4.5795	5.5729	-4.1462
0.51697	157.709	0.990 30	0.4251	1.4154	4.9648	5.9551	-4.5397
0.75884	232.563	0.98575	0.4131	1,3988	5,3486	6.3344	-4.9356
1 111 44	349 941	0.979.09	0.3952	1 3743	5 7303	6 7094	-5.3350
1 200 20	505 609	0.010.00	0.0002	1 0000	6 1099	7 0799	-5 7300
1.022.00	000.030	0.000000	0.0000	1.0000	0,1000	7.0702	-0.1000
2.35807	140.079	0.900 30	0.3300	1.2003	0.4027	1.4380	-0.1027
3.40376	1099.515	0.935 22	0.2723	1.2075	6.8500	7.7852	-6.5777
			$T = 070^{-1}$	15 K			
0 000 00	0 000	1 000 00	1 = 3/3	1 0000			-
0.000.00	0.000	1.000.00	0.2222	1.2222		-∞	α 0 00 : -
0.10321	33.349	0.997 57	0.2162	1.2137	3.4403	4.4378	-3.2241
0.15202	49.179	0.996 42	0.2133	1.2097	3.8275	4.8239	-3.6143
0.22380	72.523	0.99472	0.2090	1.2037	4.2143	5.2090	-4.0053

	.,							
P, MPa	$ ho, mol/m^3$	Z	U/RT	H/RT	A/RT	G/RT	S/R	
 0.329 20	106.947	0.992 22	0.2027	1.1949	4.6002	5.5924	-4.3975	
0.48365	157.709	0.988 55	0.1934	1.1820	4.9849	5.9735	-4.7915	
0.70932	232.563	0.98315	0.1797	1.1628	5.3679	6.3511	-5.1882	
1.03757	342.941	0.97525	0.1594	1.1346	5.7483	6.7236	-5.5889	
1.51187	505.698	0.96370	0.1293	1.0930	6.1250	7.0887	-5.9957	
			T = 348.1	5 K				
0.000 00	0.000	1,000 00	-0.0307	0.9693		-∞	8	
0.096 25	33.34 9	0.99711	-0.0378	0.9594	3.4465	4.4436	-3.4842	
0.14174	49.179	0.99574	-0.0411	0.9546	3.8336	4.8293	-3.8747	
0.208 60	72.523	0.99373	-0.0460	0.9477	4.2200	5.2137	-4.2660	
0.306 69	106.947	0.99076	-0.0533	0.9374	4.6054	5.5962	-4.6588	
0.45026	157.709	0.986 39	-0.0641	0.9222	4.9895	5.9758	-5.0536	
0.65965	232.563	0.979 96	-0.0801	0.8998	5.3714	6.3514	-5.4515	
			T = 323.1	5 K				
0.000 00	0.000	1.000 00	-0.3136	0.6864			80	
0.089 29	33,349	0.996 54	-0.3220	0.6745	3.4332	4.4297	-3.7552	
0.131 45	49.179	0.994 90	-0.3260	0.6689	3.8200	4.8149	-4.1459	
0.193 37	72.523	0.99248	-0.3319	0.6606	4.2060	5.1985	-4.5378	

^aReference state: $H_{ref} = 0.0$ and $S_{ref} = 0.0$ at $P_{ref} = 1.0$ kPa, $T_{ref} = 273.16$ K.

Table I (Continued)

Figure 1. Pressure-enthalpy diagram for the 98% CO_2 -2% H_2O mixture. Reference state is perfect gas at 273.16 K and 1.0 kPa. The densities and entropies are per mole of the gaseous mixture.

Figure 2. Pressure-enthalpy diagram for the 95% CO_2 -5% H_2O mixture. Reference state is perfect gas at 273.16 K and 1.0 kPa. The densities and entropies are per mole of the gaseous mixture.

manding new interest in the area of tertiary recovery of crude oil. Data are needed for the saturated vapor over several compositions to determine the amount of dehydration required for the wet CO_2 gas from the source fields to prevent condensation and subsequent corrosion in the pipelines. Also, since CO_2 -H₂O is a constitutive pair, such binary data are a prior necessity to understanding the complex phase equilibria

Figure 3. Pressure-enthalpy diagram for the 90% CO₂-10% H₂O mixture. Reference state is perfect gas at 273.16 K and 1.0 kPa. The densities and entropies are per mole of the gaseous mixture.

and thermodynamic properties of the separate phases found in petroleum reservoirs undergoing tertiary CO₂ flooding.

Carbon dioxide-water mixtures have been studied predominantly for liquid-phase properties. Numerous measurements for the solubility of CO₂ in liquid H₂O and of H₂O in compressed CO₂ include those by Welbe and Gaddy (1-3), Houghton et al. (4), Coan and King (5), and Zawisza and Malesińska (6). Further, Hicks and Young (7) have compiled data on the vapor-liquid critical locus (which exhibits a gas-gas equilibrium of the second type), and Vanderzee and Haas (8) have evaluated interaction second virial coefficients using measurements reported by Maass and Mennie (9) and Greenwood (10, 11). Finally, excess enthalpy measurements (using a flow calorimeter) have been undertaken by Wormald's group (12-14). However, no comprehensive data on the density and enthalpy of saturated (dew point) and unsaturated mixtures are available over several compositions.

We present in this paper, experimental densities and derived thermodynamic properties (in dimensionless form) for mixtures of 2%, 5%, 10%, 25%, and 50% H₂O in CO₂ along with pressure-enthalpy diagrams for each.

Experimental Section

Materials. Ultra Pure Grade CO₂ was obtained from Scientific Gas Products Inc. The gas was certified to be 99.995%

Table II.	Molar Densities	and Dimensionles	s Thermodynamic	Properties for (the 95% CO ₂ -5%	H ₂ O Gaseous Mixture	a

Table II. Molar	Densities and Dime	ensionless Ther	mouynamic FI	ropercies for t	ne 55 % CU2-5	70 n ₂ U Gaseou	is Mixture
P, MPa	ρ , mol/m ³	Z	U/RT	H/RT	A/RT	G/RT	S/R
·	······································		T = 498	15 K		, <u>, , , , , , , , , , , , , , , , </u>	
0.000.00	0.000	1.000.00	1,1762	2.1762		-∞	æ
0.00000	31 947	0 998 97	1 1725	2 1714	3 1946	4 1935	-2 0221
0.19482	47.112	0.99848	1,1707	2.1692	3.5825	4.5810	-2.4118
0.287.09	69.476	0.99776	1.1680	2.1658	3.9703	4.9680	-2.8022
0 422 92	102 455	0.99671	1 1642	2 1609	4 3577	5 3544	-3 1935
0.622.71	151 089	0.99517	1 1584	2 1536	4 7445	5 7397	-3 5861
0.916.20	222 805	0.992.91	1 1500	2 1429	5 1 3 0 7	6 1 2 3 6	-3 9807
1 346 59	328 558	0.989.62	1 1376	2 1 2 7 2	5 5157	6 5054	-4 3781
1 976 14	484,496	0.984.85	1 1194	2 1042	5 8992	6 8841	-4 7799
2 893 78	714 425	0.978.03	1 0926	2.0706	6 2805	7 2585	-5 1879
4 224 93	1053 442	0.968.39	1.0520	2.0100	6 6585	7 6269	-5.6052
6 144 16	1553 277	0.95512	0.9961	1 9512	7 0321	7 9872	-6.0360
8 892 50	2290 176	0.937.56	0.9128	1.8503	7 3997	8 3372	-6 4869
0.00200	22001210	01001 00	0.0120	1.0000	1.0001	0.0012	0.1000
			T = 473.	15 K			
0.000 00	0.000	1.00000	1.0150	2.0150		-∞	œ
0.12551	31.947	0.99877	1.0110	2.0098	3.2508	4.2496	-2.2398
0.184 99	47.112	0.99819	1.0091	2.0073	3.6387	4.6368	-2.6295
0.27256	69.476	0.997 33	1.0063	2.0037	4.0263	5.0236	-3.0199
0.40144	102.455	0.99607	1.0022	1.9983	4.4134	5.4095	-3.4112
0.590 90	151.089	0.994 22	0.9961	1.9903	4.8000	5.7942	-3.8039
0.86901	222.805	0.99152	0.9872	1.9787	5.1857	6.1772	-4.1985
1.27638	328.558	0.98758	0.9740	1.9616	5.5701	6.5577	-4.5961
1.87126	484.496	0.981 86	0.9547	1.9366	5.9526	6.9345	-4.9979
2.73622	714.425	0.97364	0.9264	1.9000	6.3325	7.3061	-5.4061
3.986 34	1053.442	0.961 98	0.8850	1.8470	6.7084	7.6704	-5.8234
5,778.85	1553.277	0.94579	0.8248	1.7705	7.0790	8.0248	-6.2542
8.324 97	2290.176	0.92410	0.7376	1.6617	7.4422	8.3663	-6.7046
			0.1010	210021		0.0000	0.1010
			T = 448.1	15 K			
0.000 00	0.000	1.00000	0.8409	1.8409	-∞		œ
0.11885	31.947	0.99854	0.8366	1.8351	3.3010	4.2995	-2.4644
0.17515	47.112	0.997 85	0.8345	1.8324	3.6887	4.6866	-2.8542
0.25804	69.476	0.996 84	0.8315	1.8284	4.0762	5.0730	-3.2446
0.379 95	102.455	0.99535	0.8271	1.8224	4.4631	5.4585	-3.6360
0.55908	151.089	0.99316	0.8205	1.8137	4.8493	5.8425	-4.0288
0.82179	222.805	0.989 96	0.8109	1.8009	5.2345	6.2245	-4.4236
1.20612	328.558	0.985 28	0.7967	1.7820	5.6182	6.6035	-4.8215
1.76630	484.496	0.97849	0.7759	1.7544	5.9996	6.9781	-5.2238
2.57850	714.425	0.968 70	0.7453	1.7140	6.3779	7.3466	-5.6325
3.747 42	1053.442	0.95478	0.7006	1.6554	6.7515	7,7063	-6.0509
5.41293	1553.277	0.935 33	0.6355	1.5708	7.1187	8.0540	-6.4832
7.75637	2290.176	0.909 01	0.5411	1.4501	7.4770	8.3860	-6.9359
			T = 423.2	15 K			
0.000 00	0.000	1.000 00	0.6518	1.6518	-∞		œ
0.112 19	31.947	0.998 29	0.6471	1.6454	3.3436	4.3418	-2.6965
0.16532	47.112	0.99747	0.6449	1.6423	3.7312	4.7287	-3.0863
0.24350	69.476	0.996 28	0.6416	1.6378	4.1185	5.1147	-3.4769
0.35846	102.455	0.99452	0.6367	1.6312	4.5051	5.4997	-3.8685
0.52724	151.089	0.99194	0.6295	1.6214	4.8910	5.8829	-4.2615
0.77454	222.805	0.98816	0.6189	1.6071	5.2756	6.2638	-4.6567
1.13578	328.558	0.98263	0.6033	1.5859	5.6584	6.6410	-5.0551
1.66114	484.496	0.97460	0.5803	1.5549	6.0386	7.0132	-5.4583
2.42030	714.425	0.962 99	0.5465	1.5095	6.4150	7.3780	-5.8685
3.50737	1053.442	0.946 41	0.4968	1.4432	6.7859	7.7323	-6.2891
5.04425	1553.277	0.92312	0.4239	1.3470	7.1491	8.0723	-6.7253
7.18081	2290.176	0.891 28	0.3170	1.2083	7.5017	8.3930	-7.1847
			<i>т</i> 000 г				
0.000.00	0.000	1 000 00	T = 398.1	1 4 4 5 C			
0.000.00	0.000	1.000.00	0.4403	1.4453			∞ • • • • • •
0.105.53	31.947	0.997.98	0.4400	1.4380	3.3767	4.3747	-2.9367
0.10048	47.112	0.997.02	0.4375	1.4345	3.7642	4.7612	-3.3267
0.2289/	09.470	0.995 62	0.4338	1.4294	4.1512	5.1469	-3./1/4
0.330 95	102,400	0.993 54	0.4283	1.4219	4.5376	5.5312	~4.1093
0.4903/	191.009	0.990.90	0.4203	1.4108	4.9230	9.9139	-4.5027
0.72721	222.805	0.986.03	0.4084	1.3944	5.3069	6.2930	-4.8986
1.065.27	328.558	0.979.50	0.3907	1.3702	5.6887	6.6682	-5.2980
1.000.08	484.496	0.969.97	0.3647	1.3347	6.0674	7.0374	-5.7027
2.261 16	714.425	0.95616	0.3261	1.2823	6.4416	7.3978	-6.1155
3.264 98	1053.442	0.93632	0.2689	1.2052	6.8093	7.7456	-6.5404
			T = 373.1	5 K			
0.000 00	0.000	1,000 00	0.2182	1.2182	00	-∞	80
0.09887	31.947	0,997 61	0.2121	1.2097	3.3979	4.3955	-3.1858
0.14564	47.112	0,99648	0.2092	1.2057	3.7852	4.7817	-3.5760
0.21442	69.476	0.994 81	0.2050	1.1998	4.1720	5,1668	-3.9670

T (4)		u)							
	P, MPa	ho, mol/m ³	Z	U/RT	H/RT	A/RT	G/RT	S/R	
	0.315 42	102.455	0.99236	0.1987	1.1910	4.5580	5.5504	-4.3593	
	0.46345	151.089	0.98875	0.1894	1.1781	4.9428	5.9316	-4.7535	
	0.67976	222.805	0.98345	0.1755	1.1590	5.3259	6.3094	-5.1504	
	0.994 47	328.558	0.97566	0.1551	1.1307	5.7065	6.6821	-5.5514	
	1.44934	484.496	0.96427	0.1245	1.0888	6.0833	7.0476	-5.9588	
				T = 348.1	5 K				
	0.000 00	0.000	1.000 00	-0.0336	0.9664	-∞		æ	
	0.09220	31.947	0.997 15	-0.0408	0.9563	3.4039	4.4010	-3.4447	
	0.135 79	47.112	0.99580	-0.0442	0.9516	3.7910	4.7868	-3.8352	
	0.19985	69.476	0.993 81	-0.0493	0.9445	4.1775	5.1713	-4.2267	
	0.293 85	102.455	0.990 88	-0.0568	0.9341	4.5630	5.5538	-4.6198	
	0.43144	151.089	0.986 55	-0.0679	0.9187	4.9741	5.9336	-5.0150	
	0.63211	222.805	0.980 18	-0.0844	0.8958	5.3291	6.3093	-5.4136	
				T = 323.1	5 K				
	0.000 00	0.000	1.000 00	-0.3155	0.6845			8	
	0.085 53	31.947	0.99656	-0.3243	0.6723	3.3904	4.3869	-3.7146	
	0.125 93	47.112	0.994 93	-0.3285	0.6665	3.7772	4.7721	-4.1056	
	0.185 26	69.476	0.99251	-0.3347	0.6578	4.1632	5.1557	-4.4979	

^aReference state: $H_{ref} = 0.0$ and $S_{ref} = 0.0$ at $P_{ref} = 1.0$ kPa, $T_{ref} = 273.16$ K.

Table II (Continued)

Figure 4. Pressure-enthalpy diagram for the 75% CO_2 -25% H_2O mixture. Reference state is perfect gas at 273.16 K and 1.0 kPa. The densities and entropies are per mole of the gaseous mixture.

pure, with less than 10 ppm N_2 , 5 ppm O_2 , 10 ppm CO, 5 ppm H_2 , and 5 ppm H_2O . The ultrapure water was prepared by several distillations of common distilled water in a Barnstead redistiller.

Apparatus and Procedure. The basic experimental measurements were made on a high-temperature Bumett-isochoric (B-I) apparatus described previously by Mansoorian et al. (15) and Eubank et al. (16). A more recent description of the apparatus and a detailed account of the operational procedure is contained in the Ph.D. dissertation of Patel (17). Briefly, however, the B-I experiment consists of filling a primary cell volume with the sample and noting its temperature and pressure, making an isochoric run (pressure measurements at fixed temperature increments), returning the cell to the original condition, and performing an expansion of the sample into a previously evacuated secondary cell volume. A series of such isochoric runs coupled with isothermal expansions, typically at the highest temperature, constitute a B-I surface run. An important feature of the B-I method is that it generates an entire $P-\rho-T$ surface with one filling of the sample; hence, for mixtures there is no need to duplicate a composition.

Being the only two observables in the B-I experiment, the pressure and temperature are measured with extreme accuracy

Figure 5. Pressure-enthalpy diagram for the 50% CO_2 -50% H_2O mixture. Reference state is perfect gas at 273.16 K and 1.0 kPa. The densities and entropies are per mole of the gaseous mixture.

and precision. Pressure measurements are accurate to 0.01% and precise to 0.001%, whereas the temperatures are accurate to 10 mK with a precision of 5 mK or better. In determining mixture compositions, the largest error is in the amount of water charged. However, because of the difference-in-mass approach used in the charging procedure, the precision, rather than the actual accuracy, of the balance is taken into account. With these considerations, the uncertainties in the compositions decrease from 0.0023% for the 2% H₂O to 0.0002% for the 50% H₂O mixture.

Data Reduction

Densities. Analysis of the measured pressures and temperatures for a B–I surface run provides the densities and compressibilities. Conventional Burnett and Burnett–isochoric analyses have been described by Holste et al. (18). However, for systems for which adsorption is diagnosed (see Hall and Eubank (19) for procedure), corrections for adsorption contributions have to be made independently. Such was the case for the present CO_2 –H₂O mixtures. The adsorption correction procedure is described in detail by Patel (17) and will be published in the future. Furthermore, the virial coefficients resulting from the above analysis and experimental dew points have been published previously by Patel et al. (20).

le III. Molar D	ensities and Dime	ensionless Ther	modynamic P	roperties for (the 90% CO ₂ -1	0% H ₂ O Gase	ous Mixture ^a
P, MPa	ρ , mol/m ³	Z	U/RT	H/RT	A/RT	G/RT	S/R
			T = 498.1	5 K			
0.000 00	0.000	1.00000	1.1599	2.1599	~~∞		8
0 154 77	37 420	0.998.69	1.1553	2.1539	3 3566	4 3553	-2.2014
0.10111	55 199	0.008.07	1 1 5 9 0	0 1511	2 7445	4 7 496	9 5015
0.22812	55.166	0.99607	1.1030	2.1011	3.7440	4.7420	~2.0915
0.33612	81.391	0.99716	1.1498	2.1469	4.1321	5.1293	-2.9824
0.49504	120.035	0.99582	1.1450	2.1408	4.5193	5.5151	-3.3743
0 728 63	177 022	0 993 86	1 1379	2 1318	4 9058	5 8997	-3 7679
1.071.44	001.000	0.000.00	1.1075	2.1010	5.0014	0.0001	6.1010
1.07144	261.060	0.990 99	1.1275	2.1185	5.2914	6.2824	-4.1639
1.57338	384.984	0.98681	1.1122	2.0990	5.6756	6.6624	-4.5634
2.30597	567.715	0.98077	1.0897	2.0705	6.0578	7.0385	-4.9680
2 270 27	827 150	0 072 12	1.0569	2 0280	6 4971	7 4002	
3.37037	037.100	0.97212	1.0000	2.0209	0.4571	7.4032	-0.0000
4.90738	1234.407	0.95992	1.0087	1.9686	6.8124	7.7723	-5.8037
7.10940	1820.098	0.94315	0.9387	1.8818	7.1820	8.1252	-6.2434
10.23673	2683.553	0.92107	0.8375	1.7586	7.5441	8.4652	-6.7066
			T (50.1	P 17			
0 000 00	0.000	1 000 00	T = 473.1	5 K	-		
0.000.00	0.000	1.000.00	1,0006	2.0006	-8		80
0.14697	37.420	0.99844	0.9957	1.9941	3.4120	4.4105	-2.4163
0.21659	55.188	0.99771	0.9934	1.9911	3.7998	4.7975	-2.8065
0.210.09	81 201	0.006.63	0.0800	1 0966	4 1979	5 1920	-2 1072
0.31908	81.391	0.55003	0.9699	1.9000	4.1073	0.1009	-3.1973
0.46983	120.035	0.99503	0.9849	1.9799	4.5742	5.5692	-3.5893
0.691 26	177.022	0.99270	0.9774	1.9701	4.6903	5.9530	-3.9829
1 015 09	261 060	0 080 28	0 9665	1 9559	5 9/59	6 33/6	-4 3799
1.010 02	201.000	0.000 40	0.0000	1.0000	0.0400	0.0040	-4.0/00
1.490.63	384.984	0.98431	0.9504	1.9347	5.7287	6.7130	-4.7783
2.18205	567.715	0.99710	0.9268	1.9039	6.1097	7.0868	-5.1829
3 183 57	837 150	0 966 75	0.8922	1 8590	6 4873	7 4541	-5 5951
0.100 07	1001.100	0.00010	0.0022	1.0000	0.4010	7.1011	0.0001
4.62318	1234.407	0.95211	0.8418	1.7939	6.8601	7.8122	-6.0182
6.67171	1820.098	0.93185	0.7687	1.7006	7.2260	8.1579	-6.4573
9.55205	2683.553	0.904 88	0.6636	1.5685	7.5828	8.4877	-6.9192
			T ((0.1	- 17			
0.000.00	0.000	1 000 00	T = 448.1	5 K			
0.000.00	0.000	1.000.00	0.8284	1.8284			æ
0.139 16	37.420	0.99817	0.8231	1.8213	3.4614	4.4596	-2.6383
0.205.06	55 188	0 997 30	0.8206	1 8179	3 8491	4 8464	-3.0285
0.200.04	81 001	0.000.00	0.0100	1 0100	4 0000	# 0000	0.0200
0.302.04	61.391	0.990.03	0.0109	1.0129	4.2303	0.2020	-3.4194
0.44461	120.035	0.99415	0.8114	1.8056	4.6229	5.6171	-3.8115
0.65388	177.022	0.991 40	0.8034	1.7948	5.0087	6.0001	-4.2053
0.960.38	261.060	0 987 37	0 7915	1 7789	5 3931	6 3804	-4 6015
1.407.00	201.000	0.001.01	0.7510	1.1103	5.0001	0.0004	-4.0010
1.407.83	384.984	0.98149	0.7741	1.7556	0.7750	0.7570	-5.0014
2.05803	567.715	0.97297	0.7485	1.7215	6.1552	7.1282	-5.4067
2,996,52	837.150	0.96071	0.7109	1.6716	6.5309	7.4916	-5.8199
4 339 40	1994 407	0.049.90	0,6550	1 5000	6 0009	7 9441	6 0440
4.336 40	1234.407	0.943 30	0.0559	1.0992	0.9000	1.0441	-0.2449
6.23260	1820.098	0.919 08	0.5755	1.4946	7.2626	8.1817	-6.6871
8.86381	2683.553	0.88652	0.4588	1.3453	7.6134	8.4999	-7.1546
			T = 493.1	5 K			
0.000.00	0.000	1 000 00	0.6413	1 6413			
0.000000	0.000	1.000.00	0.0410	1,0410	0 5000	1 5011	0.0070
0,13136	37.420	0.997 85	0.6354	1.6332	3.5033	4.5011	-2.8679
0.19353	55.188	0.996 83	0.6326	1.6294	3.8908	4.8876	-3.2582
0.24899	81.391	0,995.33	0.6284	1.6238	4.2778	5 2732	-3 6494
0.410.07	100.005	0.000.10	0.0004	1 01 55	1 00 41	5.2102	40410
0.4193/	120.030	0.99312	0.0224	1.0100	4.0041	0.0072	-4.0418
0.61646	177.022	0.98989	0.6134	1.6033	5.0494	6.0392	-4.4360
0.90475	261.060	0.98514	0.6001	1.5853	5.4330	6.4182	-4.8329
1 324 85	384 984	0 978 21	0.5806	1 5588	5 8145	6 7997	-5 2330
1 000 55	507.007	0.000 10	0.0000	1 = 100	0.0110	0.1021	0.2000
1,933 55	567.715	0.968 13	0.5517	1.5198	6.1926	7.1607	-5.6409
2.80836	837.150	0.953 58	0.5089	1.4625	6.5659	7.1595	-6.0570
4.05082	1234.407	0.93281	0.4455	1.3783	6.9324	7.8653	-6.4869
			T - 000 1	F 17			
0.000.00	0.000	1 000 00	I = 398.1	0 K 1 4967	_	_	
0.00000	0.000	1.000.00	0.400/	1.430/			60
0.12355	37.420	0.997 46	0.4299	1.4274	3.5358	4.5332	-3.1059
0.18200	55.188	0.996 26	0.4267	1.4229	3.9231	4,9194	-3,4964
0 267 93	81 901	0 994 49	0 4910	1 4164	1 3008	5 30/2	-3 2270
0.401 00	100.005	0.001 00	0.4217	1.4104	4.0000	5.0040	-9.0019
0.394 10	120.035	0.991.99	0.4149	1.4067	4.6957	5.6876	-4.2809
0.57897	177.022	0.98806	0.4044	1.3925	5.0804	6.0684	-4.6760
0.84896	261.060	0.98243	0.3890	1.3714	5.4632	6.4456	-5.0742
1 941 46	384 084	0 074 90	0 3660	1 9/09	5 8/22	6 9175	-5 4779
1 202 10	004.004 567 715	0.01420	0.0000	1.0402	0.04±00 £ 010≍	0.01/0	-0.4113 _5 0077
1.00812	001.110	0.90217	0.0010	1.2340	0.2190	(.181/	-9.8877
			T = 373.1	5 K			
0.000 00	0.000	1.00000	0.2115	1.2115		-∞	80
0 115 74	27 100	0 000 00	0 9099	1 9009	2 5569	4 5500	_0 0500
0.110 /4	01.420	0.000 00	0.2033	1.2003	0.0000	4.0000	-3.3030
0.17045	55.188	0.995 55	0.1994	1.1950	3.9434	4.9390	-3.7440
0.25084	81.391	0.99344	0.1937	1.1871	4.3298	5.3233	-4.1362
0 368 78	120 035	0 990 32	0 1852	1 1755	4 7159	5 7056	-4 5301
0.00010	177 000	0.00002	0.1004	1 1 200	= 0000	0.1000	4.0001
0.04134	177.022	0.98574	0.1725	1.1582	5.0992	6.0849	-4.9266
0.79286	261.060	0.97898	0.1536	1.1326	5.4809	6.4598	-5.3272

P, MPa	ho, mol/m ³	Z	U/RT	H/RT	A/RT	G/RT	S/R
- ··· ·			T = 348.1	5 K			
0.000 00	0.000	1.000 00	-0.0385	0.9615			œ
0.107 91	37.420	0.996 35	-0.0487	0.9476	3.5618	4.5581	-3.6105
0.15888	55.188	0.99461	-0.0536	0.9410	3.9486	4.9432	-4.0022
0.23371	81.391	0.99204	-0.0609	0.9312	4.3345	5.3266	-4.3954

° Reference state: $H_{\rm ref}$ = 0.0 and $S_{\rm ref}$ = 0.0 at $P_{\rm ref}$ = 1.0 kPa, $T_{\rm ref}$ = 273.16 K.

Table IV.	Molar Densities	and Dimensionless	Thermodynamic I	Properties for the	75% CO ₂ -25% H ₂ C	Gaseous Mixture ^a

				-		-		_
P, MPa	ho, mol/m ³	Z	U/RT	H/RT	A/RT	G/RT	S/R	
			T = 498.1	5 K				
0.000 00	0.000	1.000 00	1.1109	2.1109	-∞	- 8	8	
0.15732	38.053	0.99827	1.1052	2.1035	3.3856	4.3839	-2.2804	
0.231 91	56.140	0.99746	1,1024	2.0999	3.7736	4.7711	-2.6712	
0.341.71	82 820	0 996 25	1 0984	2 0947	4 1613	5 1575	-3.0628	
0.503 10	122.020	0.004.48	1 0025	2.0041	4.5483	5 5497	-9.4559	
0.003 19	122.174	0.001.99	1.0920	2.0010	4.0400	5.0020	0.4000	
0.740.30	180.216	0.991 00	1.0837	2.0756	4.9343	0.9262	-3.8906	
1.08773	265.814	0.988.06	1.0708	2.0589	5.3191	6.3072	-4.2483	
1.59522	392.043	0.98249	1.0518	2.0343	5.7201	6.6846	-4.6502	
2.33317	578.175	0.97438	1.0239	1.9983	6.0823	7.0567	-5.0584	
3.399 33	852.623	0.96267	0.9829	1.9456	6.4586	7.4213	-5.4757	
4.925 46	1257.273	0.94593	0.9229	1.8688	6.8295	7.7754	-5.9066	
7.081 96	1853.868	0.922 40	0.8352	1.7576	7.1925	8.1149	~6.3573	
10.077 26	2733.414	0.89018	0.7076	1.5978	7.5447	8.4349	-6.8371	
			T = 4721	5 V				
0.000.00	0.000	1.000.00	1 - 473.1 0.9573	.5 K 1.9573		- ∞	80	
0 149 38	38.053	0 997 97	0.9511	1 0/01	3 / 385	4 4365	-9 4874	
0.140 00	56 140	0.007.01	0.0011	1.0459	0.4000	4 9005	_0 9799	
0.22017	56.140	0.997 01	0.9402	1.9402	3.0200	4.0200	-2.0700	
0.324 35	82.820	0.995 59	0.9439	1.9395	4.2139	5.2094	-3.2700	
0.47746	122.174	0.99350	0.9375	1.9310	4.6005	5.5940	-3.6630	
0.70212	180.216	0.990 43	0.9281	1.9185	4.9862	5.9766	-4.0581	
1.030 90	265.814	0.98592	0.9142	1.9001	5.3703	6.3562	-4.4561	
1.510 29	392.043	0.97933	0.8936	1.8729	5.7522	6.7315	-4.8586	
2 205 48	578,175	0.96973	0.8632	1.8329	6.1309	7.1006	-5.2677	
3 205 66	852 623	0.955.79	0.8182	1 7740	6 5050	7 4608	-5 6869	
4 608 00	1957 979	0.00070	0.0102	1 6971	6 9796	7 9094	-6 1919	
4.02003	1207.273	0.930 11	0.7100	1.0071	7 0000	0 1000	-0.1213	
6.617.05	1853.868	0.90738	0.6516	1.5590	7.2308	8.1382	-0.5792	
			T = 448.1	5 K				
0.000 00	0.000	1.00000	0.7908	1.7908	-∞		œ	
0.14144	38.053	0.99762	0.7840	1.7816	3.4857	4.4833	-2.7017	
0.208 43	56.140	0.996 49	0.7807	1.7772	3.8734	4.8699	-3.0927	
0.306 97	82.820	0.99482	0.7759	1.7707	4.2606	5.2554	-3.4846	
0.45172	122.174	0.99236	0.7688	1.7612	4.6469	5.6392	-3.8781	
0.663.90	180.216	0.98875	0.7583	1.7470	5.0320	6.0207	-4.2737	
0 973 98	265 814	0 983 44	0 7497	1 7261	5 4153	6 3987	-4 6726	
1 495 11	200.014	0.000 44	0.7104	1 6051	5 7960	6 7716	-5.0766	
1.42011	572.045	0.970 00	0.7134	1.0301	6 1790	7 1 2 7 9	-0.0100	
2.07716	578.175	0.964 25	0.6848	1.6490	6.1730	7.1372	-0.4002	
3.01034	852.623	0.94763	0.6327	1.5803	6.5445	7.4921	-5.9118	
			T = 423.1	.5 K				
0.000 00	0.000	1.000 00	0.6095	1.6095	-∞	-∞	œ	
0.13349	38.053	0.997 19	0.6016	1.5988	-3.5255	4.5227	-2.9239	
0.196 68	56.140	0.99586	0.5978	1.5936	3.9130	4.9089	-3.3152	
0.28958	82.820	0.993 89	0.5921	1.5860	4.2999	5.2937	-3.7077	
0.425.93	122,174	0.990.99	0.5837	1.5747	4.6857	5.6767	-4.1020	
0 625 56	180 216	0 986 70	0.5712	1 5579	5.0702	6 0569	-4 4990	
0.02000	265 814	0.00010	0.5523	1 5396	5 4525	6 4329	-4 9002	
1 339 94	200.014	0.971.03	0.5025	1.0020	5 8317	6 8028	-5 3082	
1.555 24	552.045	0.57105	0.0250	1.4340	0.0017	0.0020	0.0002	
0.000.00	0.000	1 000 00	T = 398.1	1 4107			~	
0.00000	0.000	1.000 00	0.4010	1.4107	0 5500	4 5507	9 1550	
0.125 54	38.053	0.996 66	0.4010	1.3977	3.0000	4.0027	-3.1000	
0.184.91	56.140	0.995.06	0.3963	1.3914	3.9433	4.9384	-3.5470	
0.27214	82.820	0.99269	0.3892	1.3819	4.3298	5.3225	-3.9405	
0.400 03	122.174	0.98918	0.3785	1.3677	4.7151	5.7043	-4.3365	
0.58697	180.216	0.98396	0.3622	1.3461	5.0986	6.0826	-4.7365	
			T = 373.1	.5 K				
0.000 00	0.000	1.000 00	0.1913	1.1913		-∞	œ	
0.117 57	38.053	0.995 92	0.1787	1.1746	3.5749	4.5708	-3.3962	
0.173.11	56.140	0.993.95	0.1725	1.1664	3,9618	4,9558	-3,7893	
0 254 62	89 890	0.991.01	0.1629	1.1539	4.3477	5.3388	-4.1848	
0.20102	02.020	0.001.01	0,1000	1.1000	1.0 1 1	0.0000		

^aReference State: $H_{\rm ref}$ = 0.0 and $S_{\rm ref}$ = 0.0 at $P_{\rm ref}$ = 1.0 kPa, $T_{\rm ref}$ = 273.16 K.

V. Molar De	nsities and Dime	nsionless Theri	modynamic Pr	operties for th	ne 50% CO ₂ -50	0% H ₂ O Gaseo	us Mixture
P, MPa	ρ , mol/m ³	Z	U/RT	H/RT	A/RT	G/RT	S/R
			T = 498.	15 K			
0.000 00	0.000	1.000 00	1.0293	2.0293		-∞	80
0.12069	29.204	0.99782	1.0223	2.0201	3.1415	4.1393	-2.1192
0.17800	43.119	0.99678	1.0190	2.0158	3.5301	4.5269	-2.5111
0.26237	63.654	0.99525	1.0141	2.0093	3.9181	4.9133	-2.9040
0.38636	93,950	0.99299	1.0068	1,9998	4.3051	5.2981	-3.2983
0.568.24	138 640	0 989 66	0.9960	1 9857	4 6909	5 6806	~3 6949
0 834 24	204 554	0 984 76	0.9801	1 9649	5 0749	6.0597	-4 0948
1 221 66	301 758	0.977.54	0.9565	1 9341	5 4565	6 4340	-4 5000
1 789 /1	445 099	0.066.03	0.0000	1 8885	5 8345	6 8014	-4 9130
2 596 49	440.000 656 AGA	0.900 95	0.5210	1 9900	6 2074	7 1599	-4.9130
2.00040	000.404	0.009 50	0.0035	1.0209	6 5799	7.1000	-0.0079
3.72293	900.122	0.920 03	0.7917	1.7202	0.0720	7.5014	-0.7812
			T = 473.2	15 K			
0.000 00	0.000	1.00000	0.8851	1.8851	- œ		æ
0.114 59	29.204	0.997 44	0.8774	1.8749	3.1904	4.1879	-2.3130
0.16898	43.119	0.996 22	0.8738	1.8700	3.5789	4.5751	-2.7051
0.248 99	63.654	0.994 42	0.8684	1.8628	3.9666	4.9610	-3.0982
0.36652	93.950	0.991 77	0.8603	1.8521	4.3532	5.3450	-3.4929
0.53873	138.640	0.987 85	0.8484	1.8363	4.7384	5.7263	-3.8900
0.790 21	204.554	0.98206	0.8307	1.8128	5.1216	6.1036	-4.2908
1.155.59	301.758	0.973 53	0.8044	1.7779	5.5019	6.4754	-4.6975
1 682 44	445 099	0 960 92	0 7648	1 7258	5 8780	6 8389	-5 1131
2.433 28	656.464	0.942 29	0.7051	1.6474	6.2479	7.1902	-5.5429
			T 440 -				
0.000.00	0.000	1 000 00	T = 448.	1 7000			
0.00000	0.000	1.000 00	0.7282	1.7282		~~~	0 51 40
0.10848	29.204	0.997.00	0.7195	1.7165	3.2338	4.2308	-2.5143
0.159 94	43.119	0.995 56	0.7153	1.7108	3.6220	4.6176	-2.9068
0.23561	63.654	0.993 44	0.7090	1.7024	4.0094	5.0028	-3.3004
0.346 65	93.950	0.990 31	0.6997	1.6900	4.3956	5.3859	-3.6959
0.50915	138.640	0.98568	0.6857	1.6714	4.7801	5.7658	-4.0943
0.74598	204.554	0.97882	0.6648	1.6436	5.1622	6.1410	-4.4975
1.08902	301.758	0.96863	0.6329	1.6015	5.5409	6.5096	-4.9081
1.581 19	445.099	0.953 47	0.5838	1.5372	5.9147	6.8681	-5.3309
			T = 423.1	15 K			
0.000 00	0.000	1.000 00	0.5566	1.5566	-∞	~8	8
0.10237	29.204	0.996 44	0.5459	1.5424	3.2702	4.2666	-2.7242
0.15089	43.119	0.99473	0.5408	1.5355	3.6581	4.6528	-3.1174
0.22218	63.654	0.99 220	0.5330	1.5252	4.0451	5.0373	-3.5121
0.326 69	93.950	0.98844	0.5212	1.5097	4,4307	5,4191	-3.9094
0.47936	138.640	0.98283	0.5033	1.4861	4.8143	5,7971	-4.3109
0.701 21	204.554	0.974 43	0.4755	1.4500	5.1950	6.1694	-4.7195
			$\pi = 000$	IE V			
0.000.00	0.000	1 000 00	T = 398.1	1 3675		_~	~
0.000.00	0.000	0.005.60	0.0070	1 9 4 0 4	2 2076	4 0000	
0.000 20	23.204	0.000 61	0.0007	1.0494	0.2910	4.2933	-2.9439
0.141.82	43.119	0.993.01	0.3470	1.3400	3.0802	4.0788	-3.3382
0.208 /0	03.004	0.990.50	0.3369	1.3274	4.0716	5.0621	-3.7347
0.306 58	93.950	0.985 85	0.3216	1.3075	4.4564	5.4422	-4.1348

^aReference state: $H_{\rm ref}$ = 0.0 and $S_{\rm ref}$ = 0.0 at $P_{\rm ref}$ = 1.0 kPa, $T_{\rm ref}$ = 273.16 K.

Thermodynamic Properties. Once these corrections have been made and the densities and compressibilities determined, calculation of the thermodynamic properties is achieved through the use of residual properties. A residual property is defined as the difference between the real fluid property value and the perfect gas state property value. Of the various forms of such property changes discussed by Hall et al. (21), the one used here is the real fluid property at the temperature and density of the fluid less the perfect gas property at a reference temperature, $T_{\rm ref}$, and reference pressure, $P_{\rm ref}$. Thus, for a property *M*, the residual property is defined as

$$M - M^*_{\text{ref}} \equiv M(T,\rho) - M^*(T_{\text{ref}}, P_{\text{ref}}/RT_{\text{ref}})$$
(1)

where the • indicates the hypothetical perfect gas state. The path chosen for integration is

$$M(T,\rho) \rightarrow M^{*}(T,0) \rightarrow M^{*}(T_{ref},0) \rightarrow M^{*}(T_{ref},P_{ref}/RT_{ref})$$

With this formulation, it is most convenient to establish $(U - U_{ref}^*)$ and $(S - S_{ref}^*)$, and then to calculate the other properties from these two. The starting equations are

$$dU = C_{v} dT + R \left(\frac{\partial Z}{\partial 1/T}\right)_{\rho} \frac{d\rho}{\rho}$$
(2)

$$dS = C_v \frac{dT}{T} + R \left[\frac{1}{T} \left(\frac{\partial Z}{\partial 1/T} \right)_{\rho} - Z \right] \frac{d\rho}{\rho}$$
(3)

The residual internal energy then is determined by using

$$\frac{U-U^*_{ref}}{RT} = \frac{1}{T} \int_0^{\rho} \left(\frac{\partial Z}{\partial 1/T} \right)_{\rho}^{\rho} \frac{d\rho}{\rho} + \frac{1}{T} \int_{T_{ref}}^{T} \frac{C^*_{\nu}}{R} dT \quad (4)$$

and the residual entropy by using

$$\frac{S - S^{*}_{\text{ref}}}{R} = \int_{0}^{\rho} \left[1 - Z + \frac{1}{T} \left(\frac{\partial Z}{\partial 1/T} \right)_{\rho} \right] \frac{d\rho}{\rho} + \int_{T_{\text{ref}}}^{T} \frac{C^{*}_{v} dT}{R} \frac{dT}{T} - \ln \frac{\rho RT_{\text{ref}}}{P_{\text{ref}}}$$
(5)

Finally, the remaining residual properties are calculated from

$$\frac{H-H^*_{\text{ref}}}{RT} = \frac{U-U^*_{\text{ref}}}{RT} + Z - \frac{T_{\text{ref}}}{T}$$
(6)

$$\frac{A-A^*_{\text{ref}}}{RT} = \frac{U-U^*_{\text{ref}}}{RT} - \frac{S-S^*_{\text{ref}}}{R} - \frac{S^*_{\text{ref}}}{R} \left(1 - \frac{T_{\text{ref}}}{T}\right)$$
(7)

$$\frac{G-G^*_{\text{ref}}}{RT} = \frac{H-H^*_{\text{ref}}}{RT} - \frac{S-S^*_{\text{ref}}}{R} - \frac{S^*_{\text{ref}}}{R} \left(1 - \frac{T_{\text{ref}}}{T}\right)$$
(8)

Any reference state may be specified, but for a reference state for which H_{ref}^* and S_{ref}^* are chosen to equal zero, as is the case here, $G_{ref}^* = 0$, $U_{ref}^* = -RT_{ref}$, and $A_{ref}^* = -RT_{ref}$.

Note that the only integrals required to calculate all the above residual properties are

$$\frac{1}{T} \int_{0}^{\rho} \left(\frac{\partial Z}{\partial 1/T} \right)_{\rho} \frac{d\rho}{\rho}$$
$$\int_{0}^{\rho} (Z - 1) \frac{d\rho}{\rho}$$
$$\frac{1}{T} \int_{T_{res}}^{T} \frac{C^{*} v}{R} dT$$
$$\int_{T_{res}}^{T} \frac{C^{*} v}{R} \frac{dT}{T}$$

The first two require simple applications of the equation of state, while the latter two involve only perfect-gas specific heats. Eubank et al. (22) show that density data obtained by the B-I method yield the above thermodynamic properties more accurately than do data from either straight Burnett or straight isochoric measurements.

Results

Tables I-V present the experimental densities and the derived energy properties for the five mixtures. The properties are based upon a reference state for which $H_{\rm ref}$ and $S_{\rm ref}$ are set to zero for $P_{ref} = 1$ kPa and $T_{ref} = 273.16$ K. The perfect-gas specific heats for pure CO2 were taken from Angus et al. (23) and those for pure H₂O were taken from Haar et al. (24). The properties listed have the following estimated accuracies: densities and compressibility factors, 0.05%; internal energies and enthalpies, 0.15%; Helmholtz and Gibbs free energies, 0.20%; and entropies, 0.17%. Finally, Figures 1-5 depict the more practically used pressure-enthalpy (P-H) diagrams developed from the experimental data for each mixture.

Acknowledgment

We thank Professors J. C. Holste and K. R. Hall for their helpful advice during the course of this work.

Glossary

- A Helmholtz free energy
- C_{v} specific heat capacity at constant volume
- G Gibbs free energy
- Н enthalpy
- М general variable for U, H, A, G, or S
- Ρ pressure
- R universal gas constant (8.31448 J/(mol·K))
- S entropy
 - absolute temperature
- υ internal energy
- Ζ compressibility factor $(P/\rho RT)$

Greek Letters

Τ

density ø

Superscripts

perfect gas state

Subscripts

reference state value ref

Registry No. CO2, 124-38-9.

Literature Cited

- Welbe, R.; Gaddy, V. L. J. Am. Chem. Soc. 1939, 61, 315.
 Welbe, R.; Gaddy, V. L. J. Am. Chem. Soc. 1940, 62, 815.
 Welbe, R.; Gaddy, V. L. J. Am. Chem. Soc. 1941, 63, 475.
 Welphon, G.; McLean, A. M.; Ritchle, P. D. Chem. Eng. Scl. 1957, 6, Houghton, G.; McLean, A. M.; Ritchle, P. D. Chem. Eng. Scl. 1957, 6,
- 132 (5)
- Coan, C. R.; King, A. D. J. Am. Chem. Soc. 1971, 93, 1857
- (7)
- Coan, C. A., King, A. D. J. Am. Chem. Eng. Data. 1981, 26, 388.
 Hicks, C. P.; Young, C. L. Chem. Rev. 1975, 75, 119.
 Vanderzee, C. E.; Haas, N. C. J. Chem. Thermodyn. 1981, 13, 203.
 Maass, O.; Mennie, J. H. Proc. R. Soc. London. 1928, A110, 198. (8)
- (9)

- (10) Greenwood, H. J. Am. J. Sci. 1969, 267A, 191.
 (11) Greenwood, H. J. Am. J. Sci. 1973, 273, 561.
 (12) Smith, G. R.; Wormald, C. J. J. Chem. Thermodyn. 1984, 16, 543.
 (13) Wormald, C. J.; Colling, C. N.; Smith, G. Fluid Phase Equilib. 1983, 10, 000
- 223. (14) Wormald, C. J.; Lancaster, N. M.; Sellars, A. J. Research Report, RR-
- 83; Gas Processors Association: Tulsa, OK, 1985. Mansoorian, H.; Hall, K. R.; Hoiste, J. C.; Eubank, P. T. In *Proceedings* of the 7th Symposium on Thermophysical Properties; Cezairlivan, A., (15)Ed.; American Society of Mechanical Engineers: New York, 1977; p 456.
- (16) Eubank, P. T.; Kreglewski, A.; Hall, K. R.; Holste, J. C.; Mansoorian, H. AIChE J. 1985, 31, 849.
- (17) Patel, M. R. Ph.D. Dissertation; Texas A&M University: College Station, Texas, December 1986. Holste, J. C.; Watson, M. Q.; Bellomy, M. T.; Eubank, P. T.; Hall, K. R.
- (18) AIChE J. 1980, 10, 954. (19) Hall, K. R.; Eubank, P. T. *Physica* . 1972, *61*, 346.
- (20) Patel, M. R.; Holste, J. C.; Hall, K. R.; Eubank, P. T. Fluid Phase Equillb. **1987, 36,** 279.
- (21) Hall, K. R.; Eubank, P. T.; Holste, J. C. Chem. Eng. Educ. 1983, Summer, 124.
- (22) Eubank, P. T.; Hall, K. R.; Mansoorlan, H.; Holste, J. C.; Lau, W. R.; White, P. J. Proc. 57th Ann. Conv. Gas Processors Association: New Orleans, LA, 1978.
- (23) Angus, S.; Armstrong, B.; de Reuck, K. M. Thermodynamic Tables of the Fluid State: Carbon Dioxide; Pergamon: Oxford, U.K., 1973.
 (24) Haar, L.; Gallagher, J. S.; Kell, G. S. NBS / NRC Steam Tables: Ther-
- por and Liquid States of Water In SI Units; Hemisphere: Washington, D.C., 1984.

Received for review April 20, 1987. Accepted November 30, 1987. This research was sponsored by the National Science Foundation through Grant CPE 8023182. Supplemental financial support was provided by the Exxon Research and Engineering Co. and the Gas Processors Association.